
Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic
Author(s) -
Saber Amiri,
Reza Rezaei Mokarram,
Mahmoud Sowti Khiabani,
Mahmoud Rezazadeh Bari,
Mohammad Alizadeh
Publication year - 2020
Publication title -
journal of food science and technology/journal of food science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.656
H-Index - 68
eISSN - 0975-8402
pISSN - 0022-1155
DOI - 10.1007/s13197-020-04894-5
Subject(s) - lactobacillus acidophilus , food science , chemistry , probiotic , xylose , conjugated linoleic acid , fructose , fermentation , galactose , yeast extract , factorial experiment , bacteria , biochemistry , biology , linoleic acid , fatty acid , genetics , statistics , mathematics
This study aimed to optimize the co-production of conjugated linoleic acid (CLA), exopolysaccharides (EPSs) and bacteriocins (BACs) by Lactobacillus acidophilus LA-5 in dairy food-grade by-product. The factorial design revealed that the significant factors were temperature, time, and yeast extract. Then the response surface methodology was used for optimization. At the optimal conditions the viable cell number, CLA, EPSs, and inhibition activity were 2.62 ± 0.49 × 10 8 CFU/mL, 51.46 ± 1.50 μg/mL, 348.24 ± 5.61 mg/mL and 12.46 ± 0.80 mm, respectively. FTIR, GC, TLC, and SDS page analysis revealed the functional groups of pharmabiotics. The FTIR, GC, TLC, and SDS page analysis showed that both CLA isomers ( c-9 , t-11 , and t-10 , c-12 ) produced. The FTIR, GC, TLC, and SDS page analysis indicated that produced EPSs were composed of glucose, mannose, galactose, xylose, and fructose. FTIR, GC, TLC, and SDS page used to report BACs molecular weight, which showed two fractions by molecular mass 35 and 63 kDa. Previously the ability of different probiotic bacteria investigated and optimized the production of CLA, EPSs, and BACs, but, there was no report on the co-producing capacity of these bioactive metabolites by probiotics. The present work was investigated to optimize the co-production of pharmabiotic metabolites by L. acidophilus LA-5, in supplemented cheese whey as a cultivation medium.