z-logo
open-access-imgOpen Access
Application of pulverization and thermal treatment to pigmented broken rice: insight into flour physical, functional and product forming properties
Author(s) -
I. Sapna,
A. Jayadeep
Publication year - 2020
Publication title -
journal of food science and technology/journal of food science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.656
H-Index - 68
eISSN - 0975-8402
pISSN - 0022-1155
DOI - 10.1007/s13197-020-04718-6
Subject(s) - rice flour , starch , materials science , food science , viscosity , particle size , black rice , broken rice , composite material , chemistry , raw material , organic chemistry , bran
The utilization of rice for food purposes involves pulverization and thermal processing which may affect its quality characteristics. Hence pigmented broken rice was processed in plate mill and hammer mill followed by thermal treatment by toasting to study the physical, and functional characteristics and their effect on rice noodle quality. Results showed that plate milled rice flour showed high concentration of particles with size below 148 µm particle (44%), increased redness (21%), bulk density (17%), sedimentation value (75%), damaged starch (72%), peak viscosity (17%), and caused microstructural changes compared to the hammer mill. The toasting of plate milled red and black rice flour caused an insignificant influence on particle size, color, and bulk density. However, it increased the sedimentation value to 134% and 94% and damaged starch by 44% and 19% in red and black rice flour respectively. Further, a reduction in peak viscosity (22%) in red, and increase (16%) in black, along with microstructural changes were also observed. The rice noodle prepared using plate milled, and toasted red rice flour was sensorily acceptable and exhibited excellent textural properties. The study showed that plate milling and thermal treatment significantly affect the quality characteristics of pigmented rice flour and end-product quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here