z-logo
open-access-imgOpen Access
Studied of Prunus serotine oil extracted by cold pressing and antioxidant effect of P. longiflora essential oil
Author(s) -
Analía Alejandra Lu-Martínez,
Juan Gabriel Báez González,
Sandra Castillo,
Carlos A. AmayaGuerra,
José RodríguezRodríguez,
Eristeo García-Márquez
Publication year - 2020
Publication title -
journal of food science and technology/journal of food science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.656
H-Index - 68
eISSN - 0975-8402
pISSN - 0022-1155
DOI - 10.1007/s13197-020-04653-6
Subject(s) - chemistry , gallic acid , abts , dpph , food science , linoleic acid , catechin , polyunsaturated fatty acid , antioxidant , oleic acid , polyphenol , fatty acid , organic chemistry , biochemistry
Prunus serotine oil, was extracted from the seeds without shells, resulting in an oil yield of 23.41 ± 3.62%. Through GC it was shown that 52.38% of the total fatty acids present in the oil were polyunsaturated fatty acids. The fatty acids profile presented in the P. serotine oil were oleic (41.42%), linoleic (26.97%) and α-eleostearic acid (25.33%). It had a high concentration of total phenols (221 ± 15.85 mg as gallic acid equivalents/kg oil) and flavonoids (0.77 ± 0.01 mg catechin equivalents/kg oil). The antiradical activity was 31.52 ± 2.71% and 12.94 ± 0.67% of radical inhibition for colorimetric methods using ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl), respectively. The activity inhibition was 2.3 (ABTS) and 1.8 (DPPH) times higher, respectively, than the ones of Prunus dulcis oil . Lipid oxidation showed that at day nine, P. serotine oil has it maximum hydroperoxide production through two methods (hydroperoxide and MDA). Three oregano fractions were added (code: 642, 655 and A01) as natural antioxidants at four different concentrations (3000, 300, 30 and 3 ppm) each one, to extend its shelf life. Fraction 642 managed to extend its shelf life until day 30 (30 °C ± 2 °C), in both methodologies. The fraction 642 at 3 ppm, controls the production of hydroperoxide formation. Resulting in values of 3.65 µM equivalents of cumene hydroperoxide/kg of oil and 10.29 µM equivalents of 1,1,3,3-Tetraethoxypropane/kg of oil, decreasing by 3.2 times the peroxide formation with respect to P. serotine oil without leaving a Poliomintha longiflora fraction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here