
Ultrasound-assisted extracted dietary fibre from culinary banana bract as matrices for anthocyanin: its preparation, characterization and storage stability
Author(s) -
Yesmin Begum,
Sankar Chandra Deka
Publication year - 2020
Publication title -
journal of food science and technology/journal of food science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.656
H-Index - 68
eISSN - 0975-8402
pISSN - 0022-1155
DOI - 10.1007/s13197-020-04273-0
Subject(s) - anthocyanin , bract , chemistry , food science , polyphenol , pigment , crystallinity , antioxidant , black rice , dietary fibre , matrix (chemical analysis) , botany , organic chemistry , chromatography , crystallography , biology , raw material , inflorescence
Dietary fibre (DF) functionalized with polyphenols is a functional ingredients as it provides the health benefits associated with consumption of both DF and polyphenols. The present study endeavoured to prepare DF-anthocyanin formulation with different ratio of pigment-matrix where DF and anthocyanin were extracted from culinary banana bracts. The formulated powders were studied for its antioxidant, structural properties and fluorescent properties. DF-anthocyanin formulation exhibited enhancement in anthocyanin content with increase in antioxidant content and it was highest for DF-A3 with better color values (L*, a*, C*) compared to other formulations. The structure of the formulation was mainly attributed to the structure of DF and anthocyanin as evidenced by FT-IR. Moreover, changes in the degree of crystallinity were found after addition of anthocyanin in fibre matrix. The morphology study by SEM confirmed the entrapment of particles (1.97-3.88 µm) on the network structure and surface of DF. Additionally, Akin fluorescence emission spectra of DF-A3 with anthocyanin extract further confirmed the formation of DF-anthocyanin complex. Storage stability study showed DF-A3 with lowest degradation rate (k = 0.0002 day -1 ) and half-life period of 87 days.