
The dynamic interplay between DNA topoisomerases and DNA topology
Author(s) -
Yeonee Seol,
Keir C. Neuman
Publication year - 2016
Publication title -
biophysical reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.766
H-Index - 39
eISSN - 1867-2469
pISSN - 1867-2450
DOI - 10.1007/s12551-016-0206-x
Subject(s) - topoisomerase , membrane biology , dna , dna supercoil , computational biology , topology (electrical circuits) , biophysics , microbiology and biotechnology , biology , chemistry , genetics , dna replication , mathematics , combinatorics , membrane
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo . Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.