
Dynamic regulation of mitochondrial genome maintenance in germ cells
Author(s) -
Kasashima Katsumi,
Nagao Yasumitsu,
Endo Hitoshi
Publication year - 2014
Publication title -
reproductive medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.005
H-Index - 22
eISSN - 1447-0578
pISSN - 1445-5781
DOI - 10.1007/s12522-013-0162-0
Subject(s) - tfam , mitochondrial dna , biology , mitochondrion , microbiology and biotechnology , somatic cell , germ cell , genetics , germline , genome , gene
Mitochondria play a crucial role in the development and function of germ cells. Mitochondria contain a maternally inherited genome that should be transmitted to offspring without reactive oxygen species‐induced damage during germ line development. Germ cells are also involved in the mitochondrial DNA (mtDNA) bottleneck; thus, the appropriate regulation of mtDNA in these cells is very important for this characteristic transmission. In this review, we focused on unique regulation of the mitochondrial genome in animal germ cells; paternal elimination and the mtDNA bottleneck in females. We also summarized the mitochondrial nucleoid factors involved in various mtDNA regulation pathways. Among them, mitochondrial transcription factor A (TFAM), which has pleiotropic and essential roles in mtDNA maintenance, appears to have putative roles in germ cell regulation.