
Overexpression of seagrass DnaJ gene ZjDjB1 enhances the thermotolerance of transgenic arabidopsis thaliana
Author(s) -
Siting Chen,
Guanglong Qiu
Publication year - 2021
Publication title -
physiology and molecular biology of plants/physiology and molecular biology of plants
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.754
H-Index - 35
eISSN - 0971-5894
pISSN - 0974-0430
DOI - 10.1007/s12298-021-01063-6
Subject(s) - seagrass , heat shock protein , biology , arabidopsis thaliana , arabidopsis , zostera marina , botany , gene , microbiology and biotechnology , ecology , biochemistry , habitat , mutant
Seagrass meadows are one of the most important marine resources that grow along the coast. They provide habitat and a food source for animals. They also protect the coast, fix sediment and purify seawater. In the current period of global climate change, anomalies in coastal water temperatures are increasing. A sudden increase in water temperature owing to a heat wave can have a profound effect on seagrass. Zostera japonica is a type of intertidal seagrasses, which is exposed to the air at low tide. High temperatures in the summer often lead to a decline in seagrass meadows. DnaJ proteins, also known as J proteins, are a family of conserved chaperone proteins. They are designated as J proteins because they contain a highly conserved J domain. They function as chaperones of heat shock proteins in organisms. In this study, the role of DnaJ protein (ZjDjB1) of Z. japonica under heat stress was studied. ZjDjB1 was localized to the cytoplasm and nucleus. The overexpression of ZjDjB1 in Arabidopsis thaliana results in an increase in thermotolerance and a decrease in the accumulation of reactive oxygen species and also a reduction in membrane damage. ZjDjB1 may achieve this goal by maintaining a low activity of proteolytic enzymes.