z-logo
open-access-imgOpen Access
Depletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK)
Author(s) -
Kamiko R. Bressler,
Joseph A. Ross,
Slava Ilnytskyy,
Keiran Vanden Dungen,
Katrina Taylor,
Krishna Patel,
Athanasios Zovoilis,
Igor Kovalchuk,
Nehal Thakor
Publication year - 2021
Publication title -
cell stress and chaperones
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.994
H-Index - 87
eISSN - 1466-1268
pISSN - 1355-8145
DOI - 10.1007/s12192-020-01174-1
Subject(s) - internal ribosome entry site , microbiology and biotechnology , eukaryotic initiation factor , atf4 , integrated stress response , unfolded protein response , biology , endoplasmic reticulum , upstream open reading frame , translational regulation , eif 2 kinase , downregulation and upregulation , translation (biology) , kinase , protein kinase a , messenger rna , biochemistry , cyclin dependent kinase 2 , gene
During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here