Open Access
Molecular characterization and expression patterns of heat shock proteins in Spodoptera littoralis, heat shock or immune response?
Author(s) -
Nurper Güz,
Aslı Dağeri,
Boran Altincicek,
Serap Aksoy
Publication year - 2021
Publication title -
cell stress and chaperones
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.994
H-Index - 87
eISSN - 1466-1268
pISSN - 1355-8145
DOI - 10.1007/s12192-020-01149-2
Subject(s) - spodoptera littoralis , heat shock protein , biology , bacillus thuringiensis , immune system , abiotic component , hsp70 , microbiology and biotechnology , spodoptera , pest analysis , gene , botany , noctuidae , immunology , genetics , ecology , recombinant dna , bacteria
The Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.), is a major agricultural lepidopterous pest causing extensive damage in a variety of crops including vegetable, cotton, fodder, and fiber crops. Heat shock protein (HSP) family members play important roles in protecting insects against environmental stressors. In this study, we characterized three putative heat shock proteins (SpliHsp70, SpliHsp90, and SpliHSF) from S. littoralis and analyzed their expression levels in response to heat, cold, ultraviolet irradiation, Bacillus thuringiensis, and Spodoptera littoralis nucleopolyhedrovirus treatments. Significant upregulation of SpliHsp70 was observed in female pupae, while the highest expression levels of SpliHsp90 and SpliHSF were found in female adults. Heat shock triggered increases in SpliHsp levels compared to cold treatment. SpliHsp90 exhibited the highest expression levels during the first 30 min of UV treatment. Both bacterial and viral pathogenic agents effected the regulation of Hsps in S. littoralis. These findings suggest that SpliHsp genes might play significant roles in the response to biotic and abiotic stress, as well as in the regulation of developmental stages.