z-logo
Premium
Quantitative differential scanning calorimetric analysis for determining total polar compounds in heated oils
Author(s) -
Tan C. P.,
Che Man Y. B.
Publication year - 1999
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-999-0203-3
Subject(s) - differential scanning calorimetry , analytical chemistry (journal) , chemistry , crystallization , repeatability , palm oil , linear regression , calibration , chromatography , soybean oil , coefficient of determination , polar , chemical polarity , enthalpy , materials science , thermodynamics , mathematics , food science , organic chemistry , physics , statistics , astronomy , molecule
A new differential scanning calorimetry (DSC) method was developed for the determination of total polar compounds (TPC) in heated oils. Three different types of edible oils, refined, bleached, and deodorized corn oil (CO), palm olein (RBDPO), and soybean oil (SO), were used in this study, Each type of edible oil was heated at 180°C in a deep fryer to obtain a range of TPC concentrations. In this study, the cooling thermograms of oil samples at a scanning rate of 1°C/min from −30 to −85°C showed a well‐defined single crystallization peak. The study found that six DSC parameters, namely, peak temperature (PT), enthalpy (EN), onset (ON) and offset (OF) temperatures, peak height (HT), and the range of temperatures (RT) (the difference between onset and offset temperature) of this single crystallization peak could predict well the TPC of heated oils by using stepwise multiple linear regression analysis. These six parameters were used as independent variables while values from standard method were used as dependent variables. The coefficient of determination ( R 2 ) of calibration models for CO, RBDPO, and SO were 0.9996, 0.9709, and 0.9980, respectively. Calibration models were validated with an independent set of samples. The R 2 of validation models were 0.9995, 0.9559, and 0.9961, respectively. Based on the results obtained, DSC appears to be useful instrumental method in determining the TPC of edible oils, and it may have the potential to replace the time‐ and chemical‐consuming standard method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here