Premium
Application of potato lipid acyl hydrolase for the synthesis of monoacylglycerols
Author(s) -
Macrae Alasdair R.,
Visicchio Jean E.,
Lanot Alexandra
Publication year - 1998
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-998-0083-y
Subject(s) - chemistry , oleic acid , hydrolysis , selectivity , organic chemistry , chromatography , biochemistry , catalysis
Protein extracts from potato tubers contain a lipid acyl hydrolase (LAH) with an unusual selectivity. The component responsible for the enzyme activity is a group of closely related glycoproteins, known as patatin. Potato LAH catalyzes the rapid hydrolysis of monoacylglycerols (MAG), but in contrast expresses only low activity with di‐ and triacylglycerols. The selectivity of the LAH can be exploited for the synthesis of MAG from fatty acids and glycerol in microaqueous reaction systems. Oleic, linoleic, linolenic, capric, lauric, and myristic acids can be used as reactants, and in each case the reaction products contain >95 mol% MAG and <5 mol% diacylglycerol. By removing water from the reaction mixture by distillation under vacuum, excellent conversions of fatty acids into MAG are possible. Low conversions are observed with palmitic and stearic acids, because of the necessity to use a high temperature (70°C) to maintain a liquid reaction mixture. Potato LAH is rapidly inactivated at 70°C in the microaqueous reaction systems. Potato LAH also catalyzes the selective synthesis of monoesters from oleic acid and simple diols. With oleic acid and diglycerol, monoesters are again the main reaction products, but 17 mol% diesters are also formed.