z-logo
Premium
Physicochemical Properties of Acer truncatum Seed Oil Extracted Using Supercritical Carbon Dioxide
Author(s) -
Hu Peng,
Xu Xuebing,
Yu Liangli
Publication year - 2017
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-017-2983-1
Subject(s) - phytosterol , chemistry , supercritical carbon dioxide , chromatography , tocopherol , carbon dioxide , organic chemistry , vitamin e , antioxidant
Acer truncatum seed oil rich in nervonic acid was extracted using supercritical carbon dioxide. GC (Gas Chromatography) analysis revealed that the oil contained approximately 6.22% nervonic acid. The sn ‐2 compositions were also determined using lipase hydrolysis. A total of 52 triacylglycerides (TAG) were tentatively identified in the oil using an ultra‐performance convergence chromatography (UPC 2 ) coupled with quadrupole time‐of‐flight mass spectrometry (Q‐TOF‐MS) for the first time. In addition, the contents of phytosterols (1961.9–2402.8 μmol/kg) and β‐carotene (2.09–2.35 μmol/kg) were also quantified for the first time, along with tocopherols (2352.0–2654.3 μmol/kg). The γ ‐tocopherol (1296.9‐1442.3 μmol/kg) was the primary tocopherol, while β‐sitosterol (1355.2–1631.3 μmol/kg) was the dominant phytosterol. The physicochemical properties of the oil were also investigated. This study indicated that A. truncatum seed oil is rich in nervonic acid and other nutraceutical constituents. It has a high potential in functional foods for improving human health.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here