Premium
Development of Pressurized Extraction Processes for Oil Recovery from Wild Almond ( Amygdalus scoparia )
Author(s) -
Balvardi Mohammad,
Mendiola Jose A.,
CastroGómez Pilar,
Fontecha Javier,
Rezaei Karamatollah,
Ibáñez Elena
Publication year - 2015
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-015-2708-2
Subject(s) - extraction (chemistry) , chromatography , solvent , supercritical fluid , yield (engineering) , supercritical fluid extraction , oleic acid , supercritical carbon dioxide , chemistry , ethanol , materials science , organic chemistry , biochemistry , metallurgy
Wild almond Amygdalus scoparia is a very fruitful tree that is spread over an extensive region of Iran. Considering its high quality oil, the development of clean extraction processes based on the use of compressed fluids is encouraged. In this study, the main factors involved in supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) of wild almond have been optimized by using two different experimental designs and considering the oil extraction yield as a response variable; effects of time, temperature, pressure, and use of co‐solvents were studied for SFE while effects of time, temperature and type of solvent were evaluated for PLE. Results showed that the maximum oil yield using supercritical carbon dioxide was 42 %, obtained under the following conditions: extraction temperature, 40 °C; extraction pressure, 40 MPa; and 10 % ethanol as co‐solvent. The optimum extraction yield for PLE was 55 %, which was achieved using ethanol as solvent at 150 °C for 20 min. Lipidomic analysis revealed that the amount of oleic acid in the oil extracted by SFE was higher than those obtained by using other classical procedures. In addition, triacylglycerols constituted more than 98 % of the extracted oils.