Premium
Oil‐Fat Mixtures with Low Solid Fat Concentration: Influence of Fat Concentration and Cooling Conditions
Author(s) -
Irmscher Stefan B.,
Gibis Monika,
Herrmann Kurt,
Kohlus Reinhard,
Weiss Jochen
Publication year - 2015
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-015-2683-7
Subject(s) - canola , rheology , dynamic mechanical analysis , chemistry , materials science , chemical engineering , chromatography , food science , polymer , organic chemistry , composite material , engineering
Uniform suspension of particulates (salt or spices) in oil‐based marinades requires a gel behavior of the matrix. This can be achieved by adding a solid fat to the liquid oil. Besides rheology, appearance and thermal stability are important for the utilization as marinades. The influence of solid fat concentration ( c fat = 2.5–5.5 wt%) and average cooling speed (1.4, 2.6, and 4.7 °C/min) on the functional properties of oil‐fat gels from palm fat and canola oil was investigated. Oil‐fat mixtures showed complex physiochemical behavior depending on the solid fat concentration and cooling rate. All samples had a shear‐thinning behavior. Yield stresses and apparent viscosities increased at a constant cooling rate with increasing solid fat concentration. Frequency dependence of storage and loss modulus showed a transition from a viscous solution to a weak gel at c fat > 3.5 wt%. Samples at increasing cooling rates transitioned to weak gels at lower fat concentration (2.5 wt%). Mixtures became turbid and increasingly whiter as both solid fat concentration and cooling rates increased, which was explained by increased light‐scattering by fat crystal aggregates. Results show the critical importance of proper formulation and preparation conditions on the functionality of oil‐based marinades.