Premium
Biochemistry of Citric Acid Production from Rapeseed Oil by Yarrowia lipolytica Yeast
Author(s) -
Kamzolova Svetlana V.,
Lunina Julia N.,
Morgunov Igor G.
Publication year - 2011
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-011-1954-1
Subject(s) - yarrowia , citric acid , biochemistry , isocitrate lyase , glyoxylate cycle , glycerol , yeast , lipase , chemistry , fatty acid , biology , metabolism , enzyme , food science
The growth of wild type strain Yarrowia lipolytica VKM Y‐2373 and its mutant Y. lipolytica NG40/UV7 as well as the biosynthesis of citric and isocitric acid on rapeseed oil were studied. It was indicated that the initial step of assimilation of rapeseed oil in the yeast Y. lipolytica is its hydrolysis by extracellular lipases with the formation of glycerol and fatty acids, which appear in the medium in the phase of active growth. The concentrations of these metabolites were changed insignificantly upon further cultivation. Lipase and the key enzymes of glycerol metabolism (glycerol kinase) and the glyoxylate cycle responsible for the metabolism of fatty acids (isocitrate lyase and malate synthase) are induced just at the beginning of the growth phase and remain active in the course of further cultivation. These results, taken together, suggest that glycerol and fatty acids available in the medium do not suppress the metabolism of each other. Citric acid production and a ratio between citric and isocitric acids depended on the strain used. It was revealed that the wild strain produced almost equal amounts of citric and isocitric acids while the mutant produced only citric acid (175 g/L) with a yield of 1.5 g of CA per g of oil.