Premium
Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin
Author(s) -
Mungroo Rubeena,
Pradhan Narayan C.,
Goud Vaibhav V.,
Dalai Ajay K.
Publication year - 2008
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-008-1277-z
Subject(s) - chemistry , formic acid , hydrogen peroxide , acetic acid , degree of unsaturation , catalysis , ion exchange resin , oleic acid , iodine value , amberlite , iodine , nuclear chemistry , inorganic chemistry , organic chemistry , biochemistry , adsorption
Canola oil with an iodine value of 112/100 g, and containing 60% oleic acid and 20% linoleic acid, was epoxidised using a peroxyacid generated in situ from hydrogen peroxide and a carboxylic acid (acetic or formic acid) in the presence of an acidic ion exchange resin (AIER), Amberlite IR 120H. Acetic acid was found to be a better oxygen carrier than formic acid, as it produced about 10% more conversion of ethylenic unsaturation to oxirane than that produced by formic acid under otherwise identical conditions. A detailed process developmental study was then performed with the acetic acid/AIER combination. The parameters optimised were temperature (65 °C), acetic acid to ethylenic unsaturation molar ratio (0.5), hydrogen peroxide to ethylenic unsaturation molar ratio (1.5), and AIER loading (22%). An iodine conversion of 88.4% and a relative conversion to oxirane of 90% were obtained at the optimum reaction conditions. The heterogeneous catalyst, AIER, was found to be reusable and exhibited a negligible loss in activity.