Premium
Destabilization of the Emulsion Formed during Aqueous Extraction of Soybean Oil
Author(s) -
Morales Chabrand Ramón,
Kim HyunJung,
Zhang Cheng,
Glatz Charles E.,
Jung Stephanie
Publication year - 2008
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-008-1199-9
Subject(s) - emulsion , chemistry , chromatography , aqueous solution , hydrolysis , extraction (chemistry) , soybean oil , enzymatic hydrolysis , coalescence (physics) , chemical engineering , food science , organic chemistry , physics , astrobiology , engineering
Characterization and destabilization of the emulsion formed during aqueous extraction of oil from soybean flour were investigated. This emulsion was collected as a cream layer and was subjected to various single and combined treatments, including thermal treatments and enzymatic treatments, aimed at recovery of free oil. The soybean oil emulsion formed during the aqueous extraction processing of full fat flour contains high molecular weight glycinin and β‐conglycinin proteins and smaller oleosin proteins, which form a multilayer interface. Heat treatment alone did not modify the free oil recovery but freeze–thaw treatment increased the oil yield from 3 to 22%. After enzymatic treatment of the emulsion, its mean droplet size changed from 5 to 14 μm and the oil recovery increased to 23%. This increase could be attributed to the removal (due to enzymatic hydrolysis) of large molecular weight polypeptides from the emulsion interface, resulting in partial emulsion destabilization. When enzymatic treatment was followed by a freeze–thaw step, the oil recovery increased to 46%. This result can be attributed to the thinner interfacial membrane after enzymatic hydrolysis, partial coalescence during freeze–thaw, and coalescence during centrifugation. Despite the reduction in emulsion stability achieved, additional demulsification approaches need to be pursued to obtain an acceptably high conversion to free oil.