Premium
Optimization of the chemoenzymatic epoxidation of soybean oil
Author(s) -
Vlček Tomáš,
Petrović Zoran S.
Publication year - 2006
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-006-1200-4
Subject(s) - candida antarctica , soybean oil , double bond , chemistry , catalysis , lipase , hydrogen peroxide , oleic acid , hydrolysis , solvent , organic chemistry , hydrogen bond , toluene , peroxide , polymer chemistry , enzyme , molecule , biochemistry
The lipase Candida antarctica (Novozyme 435) immobilized on acrylic resin was used as an unconventional catalyst for in situ epoxidation of soybean oil. The reactions were carried out in toluene. The peracid used for converting TG double bonds to oxirane groups was formed by reaction of FFA and hydrogen peroxide. The reaction conditions were optimized by varying the lipase concentration, solvent concentration, molar ratio of hydrogen peroxide to double bond, oleic acid concentration, and reaction temperature. The kinetic study showed that 100% conversion of double bonds to epoxides can be obtained after 4 h. The addition of free acids was not required for the reaction to proceed to conversions exceeding 80%, presumably owing to generation of FFA by hydrolysis of soybean oil. The enzyme catalyst was found to deteriorate after repeated runs.