Premium
Production of FAME from acid oil, a by‐product of vegetable oil refining
Author(s) -
Haas Michael J.,
Michalski Paul J.,
Runyon Stan,
Nunez Alberto,
Scott Karen M.
Publication year - 2003
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-003-0658-4
Subject(s) - saponification , chemistry , biodiesel , methanol , sulfuric acid , organic chemistry , nuclear chemistry , chromatography , food science , catalysis
Simple alkyl FA esters have numerous uses, including serving as biodiesel, a fuel for compression ignition (diesel) engines. The use of acid‐catalyzed esterification for the synthesis of FAME from acid oil, a by‐product of edible vegetable oil refining that is produced from soapstock, was investigated. Soybean acid oil contained 59.3 wt% FFA, 28.0 wt% TAG, 4.4 wt% DAG, and less than 1% MAG. Maximum esterification occurred at 65°C and 26 h reaction at a molar ratio of total FA/methanol/sulfuric acid of 1∶15∶1.5. Residual unreacted species under these conditions, as a fraction of their content in unesterified acid oil, were FFA, 6.6%; TAG, 5.8%; and DAG, 2.6%. This corresponds to estimated concentrations of FFA, 3.2%; TAG, 1.3%; and DAG, 0.2%, on a mass basis, in the ester product. In an alternative approach, the acylglycerol species in soapstock were saponified prior to acidulation. High‐acid (HA) acid oil made from this saponified soapstock had an FFA content of 96.2 wt% and no detectable TAG, DAG, or MAG. Optimal esterification conditions for HA acid oil at 65°C were a mole ratio of FFA/methanol/acid of 1∶1.8∶0.17, and 14 h incubation. FAME recovery under these conditions was 89% of theoretical, and the residual unesterified FFA content was approximately 20 mg/g. This was reduced to 3.5 mg/g, below the maximum FFA level allowed for biodiesel, by washing with NaCl, NaHCO 3 , and Ca(OH) 2 solutions. Alternatively, by subjecting the unwashed ester layer to a second esterification, the FFA level was reduced to less than 2 mg/g. The acid value of this material exceeded the maximum allowed for biodiesel, but was reduced to an acceptable value by a brief wash with 0.5 N NaOH.