z-logo
Premium
Comparison of acyl donors for lipase‐catalyzed production of 1,3‐dicapryloyl‐2‐eicosapentaenoylglycerol
Author(s) -
Irimescu Roxana,
Hata Kazuhiko,
Iwasaki Yugo,
Yamane Tsuneo
Publication year - 2001
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-001-0221-3
Subject(s) - interesterified fat , chemistry , transesterification , yield (engineering) , lipase , catalysis , triacylglycerol lipase , chromatography , organic chemistry , enzyme , materials science , metallurgy
Synthesis of 1,3‐dicapryloyl‐2‐eicosapentaenoylglycerol (CEC) catalyzed by Lipozyme IM (immobilized Rhizomucor miehei lipase) was performed by interesterification of trieicosapentaenoylglycerol (EEE) with caprylic acid (CA) (acidolysis) and EEE with ethyl caprylate (EtC) (interesterification). Both methods involved two steps: (i) transesterification at an optimized water content and temperature for the high yield conversion of the substrate to CEC, 1‐capryloyl‐2‐eicosapentaenoylglycerol (CEOH) and 2‐eicosapentaenoylglycerol (OHEOH), and (ii) reesterification of CEOH and OHEOH to CEC by water removal under reduced pressure. Interesterification had clear advantages over acidolysis. The reaction rates for interesterification were higher and the reaction times shorter. The final yield of CEC by interesterification was higher, and the extent of acyl migration, indicated by the tricapryloylglycerol content, was lower. The disadvantage of the higher price of EtC used for interesterification (approximately 10 times higher than the price of CA) was overcome by synthesizing it directly in the same reaction vessel prior to the interesterification step. EtC was rapidly synthesized by esterification of CA with ethanol in high yield (92% obtained in 2.5 h). The amount of water added to the reaction mixture and the reaction temperature influenced the yields of CEC, CEOH, and OHEOH in the transesterification step for both interesterification and acidolysis methods. The regioisomeric purity of CEC was 100% for both methods at temperatures of 40°C or less. The highest yield of CEC (81%) was obtained for the interesterification of EEE with EtC, formed directly in the same reaction vessel, at a CA/EEE molar ratio of 20∶1 and 30°C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here