z-logo
Premium
Rheology of vegetable oil analogs and triglycerides
Author(s) -
Geller Daniel P.,
Goodrum John W.
Publication year - 2000
Publication title -
journal of the american oil chemists' society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.512
H-Index - 117
eISSN - 1558-9331
pISSN - 0003-021X
DOI - 10.1007/s11746-000-0018-4
Subject(s) - diesel fuel , rheology , triglyceride , viscosity , shear rate , vegetable oil , chemistry , crystallization , thermodynamics , materials science , organic chemistry , cholesterol , composite material , biochemistry , physics
The rheological properties of two complex mixtures of short‐chain triglycerides were experimentally determined. Dynamic or absolute viscosities of the mixtures were measured for shear rates of 0.32 to 64.69 s −1 at temperatures between 25 and 80°C. The compositions of the mixtures were based on the oil of the plant species Cuphea viscosissima VS‐320, a natural source of short‐chain triglycerides. The dynamic viscosities of these mixtures were compared to those of a traditional vegetable oil (peanut oil) and diesel fuel. The results of this comparison were used to make estimates of the performance of such triglyceride mixtures as diesel fuel substitutes, since viscosity can be a key indicator of fuel performance for possible substitute diesel fuels. The crystallization temperatures of these two mixtures were also determined experimentally, and the effects of crystallization on fuel performance were projected. Additionally, the dynamic viscosities of pure triglycerides from C6∶0 to C18∶0 at 75°C were plotted vs. chain length. These viscosities were measured at high shear rates (>6 s −1 ) where dynamic viscosity is shear‐independent. An obvious trend in the relationship between triglyceride chain length and viscosity was observed. A second‐order regression was used to obtain an equation for this relationship. This equation was used as a model for composition dependence of viscosity. This model was applied to the viscosities of the triglyceride mixtures examined here. There was good agreement between the model and the actual, measured viscosity values determined in this study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here