Premium
Comparative effects of α‐ and γ‐linolenic acids on rat liver fatty acid oxidation
Author(s) -
Kumamoto Tamotsu,
Ide Takashi
Publication year - 1998
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/s11745-998-0252-4
Subject(s) - linseed oil , linoleic acid , food science , chemistry , lipidology , clinical chemistry , fatty acid , peroxisome , biochemistry , polyunsaturated fatty acid , linolenic acid , enzyme , gene
It has been reported that both n−3 and n−6 octadecatrienoic acids can increase hepatic fatty acid oxidation activity. It remains unclear, however, whether different enzymes in fatty acid oxidation show a similar response to n−3 and n−6 octadecatrienoic acids. The activity of hepatic fatty acid oxidation enzymes in rats fed an oil mixture rich in α‐linolenic acid (18:3n−3) and borage oil rich in γ‐linolenic acid (18:3n−6) was therefore compared to that in rats fed an oil mixture rich in linoleic acid (18:2n−6) and a saturated fat (palm oil) in this study. Linseed oil served as the source of 18:3n−3 for the oil mixture rich in this octadecatrienoic acid and contained 30.6% 18:3n−3 but not 18:3n−6. Borage oil contained 25.7% 18:3n−6 and 4.5% 18:3n−3. Groups of seven rats each were fed diets containing 15% various fats for 15 d. The oxidation rate of palmitoyl‐CoA in the peroxisomes was higher in rats fed a fat mixture rich in 18:3n−3 (3.03 nmol/min/mg protein) and borage oil (2.89 nmol/min/mg protein) than in rats fed palm oil (2.08 nmol/min/mg protein) and a fat mixture rich in 18:2n−6 (2.15 nmol/min/mg protein). The mitochondrial palmitoyl‐CoA oxidation rate was highest in rats fed a fat mixture rich in 18:3n−3 (1.93 nmol/min/mg protein), but no significant differences in this parameter were seen among the other groups (1.25–1.46 nmol/min/mg protein). Compared to palm oil and fat mixtures rich in 18:2n−6, a fat mixture rich in 18:3n−3 and borage oil significantly increased the hepatic activity of carnitine palmitoyl‐transferase and acyl‐CoA oxidase. Compared to palm oil and a fat mixture rich in 18:2n−6, a fat mixture rich in 18:3n−3, but not fats rich in 18:3n−6, significantly decreased 3‐hydroxyacyl‐CoA dehydrogenase activity. Compared to palm oil and a fat mixture rich in 18:2n−6, borage oil profoundly decreased mitochondrial acyl‐CoA dehydrogenase activity, but a fat mixture rich in 18:3n−3 increased it. 2,4‐Dienoyl‐CoA reductase activity was significantly lower in rats fed palm oil than in other groups. Compared to other fats, borage oil significantly increased Δ 3 , Δ 2 ‐enoyl‐CoA isomerase activity. Activity was also significantly higher in rats fed 18:2n−6 oil than in those fed palm oil. It was confirmed that both dietary 18:3n−6 and 18:3n−3 increased fatty acid oxidation activity in the liver. These two dietary octadecatrienoic acids differ considerably, however, in how they affect individual fatty acid oxidation enzymes.