z-logo
Premium
Fatty Acid and Lipid Profiles with Emphasis on n‐3 Fatty Acids and Phospholipids from Ciona intestinalis
Author(s) -
Zhao Yadong,
Wang Miao,
Lindström Mikael E.,
Li Jiebing
Publication year - 2015
Publication title -
lipids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 120
eISSN - 1558-9307
pISSN - 0024-4201
DOI - 10.1007/s11745-015-4049-1
Subject(s) - sphingomyelin , phosphatidylethanolamine , ciona intestinalis , phosphatidylcholine , sterol , polyunsaturated fatty acid , biochemistry , biology , fatty acid , phospholipid , ceramide , glycolipid , lipidomics , chemistry , cholesterol , membrane , apoptosis , gene
Abstract In order to establish Ciona intestinalis as a new bioresource for n‐3 fatty acids‐rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC‐FID, GC–MS, 1 H NMR, 2D NMR, MALDI‐TOF‐MS and LC–ESI–MS methods. It was found that the tunic and inner body tissues contained 3.42–4.08 % and 15.9–23.4 % of lipids respectively. PL was the dominant lipid class (42–60 %) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n‐9, C20:1n‐9, C20:5n‐3 (EPA) and C22:6n‐3 (DHA). The highest amounts of long chain n‐3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 ( Z )‐dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis . Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n‐3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here