Premium
Adsorption, Desorption and Adsolubilization Properties of Mixed Anionic Extended Surfactants and a Cationic Surfactant
Author(s) -
Panswad Donyaporn,
Sabatini David A.,
Khaodhiar Sutha
Publication year - 2012
Publication title -
journal of surfactants and detergents
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.349
H-Index - 48
eISSN - 1558-9293
pISSN - 1097-3958
DOI - 10.1007/s11743-012-1372-x
Subject(s) - pulmonary surfactant , chemistry , cationic polymerization , adsorption , inorganic chemistry , desorption , ethylene oxide , carboxylate , organic chemistry , copolymer , biochemistry , polymer
Anionic and cationic surfactant mixtures exhibit desirable synergism, but are limited by their tendency to form precipitates. This research evaluates the adsorption, adsolubilization and desorption of mixtures of carboxylate‐based anionic extended surfactants and a pyridinium‐based cationic surfactant. The mixture of cetylpyridinium chloride (CPC), selected as the cationic surfactant, with four anionic extended surfactants were studied. The anionic surfactants studied were alkyl propoxylated ethoxylated carboxylate with average number of carbon chain length of 16 and 17 or 16 and 18 with 4 mol of propylene oxide groups and either 2 or 5 mol of ethylene oxide groups. The adsorption of anionic extended and cationic surfactant mixtures onto a negatively charged metal oxide surface (silica dioxide) was evaluated. The adsolubilization of phenylethanol, styrene and ethylcyclohexane were evaluated for these mixed surfactant systems. The desorption potential of individual and mixed surfactant systems was also evaluated by varying the number of washing (desorption) steps. It was found that the plateau adsorption of mixed anionic extended surfactant and cationic surfactant occurred at lower surfactant concentration than that of the CPC alone, although the maximum adsorption capacity of CPC was not enhanced in our mixed surfactant systems. Adsolubilization capacities of these mixed surfactant systems are higher than that of the individual surfactant system. For desorption studies, these mixed surfactant systems showed lower stability than the individual surfactant system.