Premium
Adsorption of aroma chemicals on cotton fabric from aqueous systems
Author(s) -
Liu Haiqing,
Obendorf S. Kay,
Leonard Michael J.,
Young Timothy J.,
Incorvia Michael J.
Publication year - 2005
Publication title -
journal of surfactants and detergents
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.349
H-Index - 48
eISSN - 1558-9293
pISSN - 1097-3958
DOI - 10.1007/s11743-005-0361-3
Subject(s) - pulmonary surfactant , adsorption , chemistry , aroma , aqueous solution , solubility , micelle , sodium dodecyl sulfate , chemical engineering , fiber , cationic polymerization , critical micelle concentration , sodium , organic chemistry , chromatography , inorganic chemistry , biochemistry , food science , engineering
The adsorption of aroma chemicals on cotton fabric was studied relative to the surfactant concentration, surfactant type, water solubility, and fiber morphology. The adsorption increased with increasing surfactant concentration to a maximum near the critical micelle concentration, then decreased with further increases in surfactant concentration. The adsorption also was found to be highly dependent on the fiber surface area and pore structure; dramatic differences were observed between untreated and mercerized cotton fabric and are believed to be due to morphological differences. Cationic and anionic surfactants increased the aroma chemical adsorption, which varied with surfactant type, with cetyltrimethylammonium chloride (CTAC)>sodium dodecyl sulfate (SDS)>H 2 O. Water solubility also influenced adsorption; in most cases, adsorption increased with water solubility. In addition, adsorption was also influenced by chemical structure and hydrophobic interactions. The adsorption of aroma chemicals on cotton fabric can be attributed to the aqueous solution being physically held in capillaries and pore structures within the fibular structure of cotton fiber and also to molecular interactions among the aroma chemical molecules, surfactants, and cotton substrate.