
Neural mechanism of visual information degradation from retina to V1 area
Author(s) -
Haixin Zhong,
Rubin Wang
Publication year - 2020
Publication title -
cognitive neurodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 41
eISSN - 1871-4099
pISSN - 1871-4080
DOI - 10.1007/s11571-020-09599-1
Subject(s) - computer science , mechanism (biology) , retina , perception , neuroscience , embodied cognition , visual processing , artificial intelligence , information processing , convolutional neural network , human visual system model , computer vision , visual perception , pattern recognition (psychology) , image (mathematics) , biology , physics , quantum mechanics
The information processing mechanism of the visual nervous system is an unresolved scientific problem that has long puzzled neuroscientists. The amount of visual information is significantly degraded when it reaches the V1 after entering the retina; nevertheless, this does not affect our visual perception of the outside world. Currently, the mechanisms of visual information degradation from retina to V1 are still unclear. For this purpose, the current study used the experimental data summarized by Marcus E. Raichle to investigate the neural mechanisms underlying the degradation of the large amount of data from topological mapping from retina to V1, drawing on the photoreceptor model first. The obtained results showed that the image edge features of visual information were extracted by the convolution algorithm with respect to the function of synaptic plasticity when visual signals were hierarchically processed from low-level to high-level. The visual processing was characterized by the visual information degradation, and this compensatory mechanism embodied the principles of energy minimization and transmission efficiency maximization of brain activity, which matched the experimental data summarized by Marcus E. Raichle. Our results further the understanding of the information processing mechanism of the visual nervous system.