
Energy features in spontaneous up and down oscillations
Author(s) -
Yihong Wang,
Xuying Xu,
Rubin Wang
Publication year - 2020
Publication title -
cognitive neurodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 41
eISSN - 1871-4099
pISSN - 1871-4080
DOI - 10.1007/s11571-020-09597-3
Subject(s) - bistability , energy consumption , stimulus (psychology) , energy (signal processing) , computer science , oscillation (cell signaling) , excitatory postsynaptic potential , physics , neuroscience , biological system , inhibitory postsynaptic potential , statistical physics , psychology , chemistry , cognitive psychology , quantum mechanics , biology , ecology , biochemistry
Spontaneous brain activities consume most of the brain's energy. So if we want to understand how the brain operates, we must take into account these spontaneous activities. Up and down transitions of membrane potentials are considered to be one of significant spontaneous activities. This kind of oscillation always shows bistable and bimodal distribution of membrane potentials. Our previous theoretical studies on up and down oscillations mainly looked at the ion channel dynamics. In this paper, we focus on energy feature of spontaneous up and down transitions based on a network model and its simulation. The simulated results indicate that the energy is a robust index and distinguishable of excitatory and inhibitory neurons. Meanwhile, one the whole, energy consumption of neurons shows bistable feature and bimodal distribution as well as the membrane potential, which turns out that the indicator of energy consumption encodes up and down states in this spontaneous activity. In detail, energy consumption mainly occurs during up states temporally, and mostly concentrates inside neurons rather than synapses spatially. The stimulation related energy is small, indicating that energy consumption is not driven by external stimulus, but internal spontaneous activity. This point of view is also consistent with brain imaging results. Through the observation and analysis of the findings, we prove the validity of the model again, and we can further explore the energy mechanism of more spontaneous activities.