
Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network
Author(s) -
Lawrence Oprea,
Christopher C. Pack,
Anmar Khadra
Publication year - 2020
Publication title -
cognitive neurodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.83
H-Index - 41
eISSN - 1871-4099
pISSN - 1871-4080
DOI - 10.1007/s11571-020-09568-8
Subject(s) - coupling strength , computer science , pattern recognition (psychology) , gaussian , biological system , artificial intelligence , classifier (uml) , traveling wave , coupling (piping) , stimulus (psychology) , physics , mathematics , biology , mechanical engineering , psychology , mathematical analysis , quantum mechanics , engineering , psychotherapist , condensed matter physics
Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.