Trace metal pollution in freshwater sediments of the world’s largest mercury mining district: sources, spatial distribution, and environmental implications
Author(s) -
Efrén García-Ordiales,
Jorge Loredo,
Stefano Covelli,
José María Esbrí,
Rocío Millán,
Pablo Higueras
Publication year - 2016
Publication title -
journal of soils and sediments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.885
H-Index - 73
eISSN - 1614-7480
pISSN - 1439-0108
DOI - 10.1007/s11368-016-1503-5
Subject(s) - environmental science , sediment , watershed , streams , pollution , trace metal , mercury (programming language) , surface runoff , trace element , environmental chemistry , hydrology (agriculture) , geology , geochemistry , metal , ecology , chemistry , organic chemistry , computer science , biology , programming language , paleontology , geotechnical engineering , machine learning , computer network
Purpose\ud\udThe Almadén mining district has suffered long-term extraction activity, and this has left significant areas of decommissioned mining liabilities. Nowadays, the uncontrolled runoff and related erosion and transport of trace metal-enriched soils and sediments affect the whole freshwater ecosystem. The goal of this study was to distinguish geogenic from mining-related sources of trace metals in freshwater sediments, to understand their dispersion in the watershed, and, finally, to evaluate the potential environmental implications for future corrective plans.\udMaterials and methods\udFreshwater surface sediment samples were collected from ten points along the main streams of the watershed (nine inside the mining district and one control point outside the district). Sediments were air dried and analyzed by different standard methods for pH, total major and trace element concentrations, total organic carbon, and grain size. In addition to the determination of the enrichment factor, a multi-statistical approach was applied involving discriminant analysis, Student’s t test, and Mann-Whitney U analysis.\udResults and discussion\udSediments inside the district contained high levels of major and trace elements with respect to the control point. The predominance of fine fractions in these sediment samples appears to be one of the most important factors that affects trace metal concentrations. Among the trace elements, not only Hg but also As, Pb, and Zn are discriminative geochemical markers, thus allowing the identification of the different mining sources and their individual or combined impact throughout the district. Furthermore, the high enrichment factors obtained for As, Hg, Pb, and Zn with respect to the local background values highlight the persistent and severe impact from the decommissioned mines on the freshwater surficial sediments and their potential geoavailable risk for aquatic organisms.\udConclusions\udThe geochemistry of freshwater sediments alone demonstrates that different contamination sources are recognizable within the mining district and these can be related to the specific decommissioned mines. In addition, the discrete sources can be clearly distinguished on the basis of the statistical analysis of the geochemical data. Despite the closure of the mines, stream sediments are still the main repository of trace metals within the district, and they are therefore a potential threat to the freshwater ecosyste
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom