z-logo
open-access-imgOpen Access
Hypoxic response regulators RHY-1 and EGL-9/PHD promote longevity through a VHL-1-independent transcriptional response
Author(s) -
Joseph Kruempel,
Mina Ha,
Megan L. Schaller,
Abrielle Fretz,
Marshall Howington,
Marjana Sarker,
Siying Huang,
Scott F. Leiser
Publication year - 2020
Publication title -
geroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.883
H-Index - 63
eISSN - 2509-2715
pISSN - 2509-2723
DOI - 10.1007/s11357-020-00194-0
Subject(s) - biology , mutant , longevity , microbiology and biotechnology , rna interference , ubiquitin , phenotype , genetics , gene , rna
HIF-1-mediated adaptation to changes in oxygen availability is a critical aspect of healthy physiology. HIF is regulated by a conserved mechanism whereby EGLN/PHD family members hydroxylate HIF in an oxygen-dependent manner, targeting it for ubiquitination by Von-Hippel-Lindau (VHL) family members, leading to its proteasomal degradation. The activity of the only C. elegans PHD family member, EGL-9, is also regulated by a hydrogen sulfide sensing cysteine-synthetase-like protein, CYSL-1, which is, in turn, regulated by RHY-1/acyltransferase. Over the last decade, multiple seminal studies have established a role for the hypoxic response in regulating longevity, with mutations in vhl-1 substantially extending C. elegans lifespan through a HIF-1-dependent mechanism. However, studies on other components of the hypoxic signaling pathway that similarly stabilize HIF-1 have shown more mixed results, suggesting that mutations in egl-9 and rhy-1 frequently fail to extend lifespan. Here, we show that egl-9 and rhy-1 mutants suppress the long-lived phenotype of vhl-1 mutants. We also show that RNAi of rhy-1 extends lifespan of wild-type worms while decreasing lifespan of vhl-1 mutant worms. We further identify VHL-1-independent gene expression changes mediated by EGL-9 and RHY-1 and find that a subset of these genes contributes to longevity regulation. The resulting data suggest that changes in HIF-1 activity derived by interactions with EGL-9 likely contribute greatly to its role in regulation of longevity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here