
Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides
Author(s) -
Alba Álvarez-Martín,
M. Sonia RodríguezCruz,
María Soledad Andrades Rodríguez,
María J. SánchezMartín
Publication year - 2016
Publication title -
environmental science and pollution research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.845
H-Index - 113
eISSN - 1614-7499
pISSN - 0944-1344
DOI - 10.1007/s11356-016-6132-4
Subject(s) - pesticide , soil water , environmental chemistry , tebuconazole , adsorption , chemistry , pirimicarb , environmental science , environmental engineering , soil science , agronomy , organic chemistry , biology
Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.