Premium
Leaf litter decomposition of 12 tree species in a subtropical forest in Japan
Author(s) -
Osono Takashi
Publication year - 2017
Publication title -
ecological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 68
eISSN - 1440-1703
pISSN - 0912-3814
DOI - 10.1007/s11284-017-1449-0
Subject(s) - plant litter , litter , tropical and subtropical moist broadleaf forests , temperate climate , subtropics , temperate forest , nitrogen , decomposition , biology , incubation , botany , zoology , agronomy , chemistry , ecology , nutrient , biochemistry , organic chemistry
The leaf litter decomposition of 12 tree species was examined for three years in a subtropical forest in Japan to follow the pattern of changes in organic chemical constituents and nitrogen (N) and the relationship between these components. The remaining mass of the leaf litter reached 7–53% of the original mass at the end of the field incubation, and the decomposition constants ( k ) ranged from 0.37 to 2.39 year −1 . The decomposition constant was significantly negatively correlated with the initial content of acid‐unhydrolyzable residue (AUR) for all 12 tree species. A net increase of AUR that lasted for the first 3 to 6 months was noted for leaf litter of four tree species. The absolute amount of total N increased initially and then decreased thereafter in leaf litter of five tree species, whereas total N mass decreased throughout the study period in leaf litter of the other species. Contents of AUR and total N in leaf litter generally increased linearly with the accumulated mass loss of litter during decomposition, resulting in positive slopes of linear regressions. Lignocellulose index and AUR to N ratio of the litter showed convergent trends for 12 tree species as the decomposition progressed. When compared with datasets for an Asian climatic gradient, the decomposition rates in the subtropical forest was intermediate between the rates in tropical and temperate forests, and AUR and N contents in decomposing litter were consistently lower than those in temperate forests, indicating faster loss of AUR and N.