z-logo
Premium
Contrasting effects of clipping and nutrient addition on reproductive traits of Heteropappus altaicus at the individual and population levels
Author(s) -
Wu MingYu,
Niu ShuLi,
Wan ShiQiang
Publication year - 2010
Publication title -
ecological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 68
eISSN - 1440-1703
pISSN - 0912-3814
DOI - 10.1007/s11284-010-0718-y
Subject(s) - biology , nutrient , population , perennial plant , forb , biomass (ecology) , agronomy , pollen , botany , population density , temperate climate , steppe , ecology , demography , grassland , sociology
This study was conducted to examine the effects of clipping and nutrient addition on plant traits of a dominant perennial forb species, Heteropappus altaicus (Willd.) Novopokr. (Compositae), at both the individual and population levels in a temperate steppe in northern China. A nested experimental design was used with clipping as the main factor and nutrient, including nitrogen (N), phosphorus (P) and both, addition as the second factor. The main effect of clipping reduced plant height, aboveground biomass (AGB) per plant, and pollen production per floret by 15.8, 34.3, 28.0% (all p < 0.05), respectively, but enhanced reproductive allocation and population density by 8 and 28.2% (both p < 0.05), respectively, suggesting contrary effects of clipping on H. altaicus traits at the individual and population levels. N addition significantly stimulated plant height, AGB per plant, reproductive allocation, pollen diameter, and pistil length, but decreased population density. The main effects of P addition also stimulated the plant traits at individual level, but did not change population traits. The significant interactions of clipping and nitrogen addition were observed on AGB per plant, pollen production, and population density. The differential responses of H. altaicus at the individual and population levels to clipping and nutrient addition indicate that the future dynamics of H. altaicus in the temperate steppe are uncertain and need long‐term research to demonstrate.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here