z-logo
Premium
The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests
Author(s) -
Ishii Hiroaki,
Asano Shoko
Publication year - 2010
Publication title -
ecological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 68
eISSN - 1440-1703
pISSN - 0912-3814
DOI - 10.1007/s11284-009-0668-4
Subject(s) - interception , understory , canopy , biology , phenology , crown (dentistry) , photosynthesis , shoot , leaf area index , botany , ecology , tree canopy , temperate forest , photosynthetic capacity , temperate rainforest , ecosystem , medicine , dentistry
Mixed forests comprising multiple tree species with contrasting crown architectures, leaf phenologies, and photosynthetic activity, tend to have high ecosystem productivity. We propose that in such forests, differentiation among coexisting species in their spatial and temporal strategies for light interception, results in complementary use of light. Spatial differentiation among coexisting tree species occurs as a result of adaptation of crown architecture and shoot/leaf morphology to the spatially variable light conditions of the canopy, sub‐canopy, and understory. Temporal differentiation occurs as a result of variation in leaf phenology and photosynthetic activity. The arrangement of leaves in both space and time is an important aspect of plant strategies for light interception and determines photosynthetic carbon gain of the plant canopy. For example, at the shoot level, morphological and phenological differentiation between long and short shoots reflects their respective shoot functions, indicating that spatial and temporal strategies for light interception are linked. Complementary use of light is a consequence of the spatiotemporal differentiation in light interception among coexisting species. Because coexisting species may show differentiation in strategies for resource acquisition (functional diversification) or convergence with respect to some limiting resource (functional convergence), the relative importance of various crown functions and their contribution to growth and survival of individuals need to be evaluated quantitatively and compared among coexisting species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here