Premium
Phenology and life cycle of the annual, Chamaesyce maculata (L.) Small (Euphorbiaceae), with multiple overlapping generations in Japan
Author(s) -
Suzuki Nobuhiko,
Teranishi Shin
Publication year - 2005
Publication title -
ecological research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.628
H-Index - 68
eISSN - 1440-1703
pISSN - 0912-3814
DOI - 10.1007/s11284-005-0055-8
Subject(s) - biology , phenology , seedling , vegetative reproduction , reproduction , germination , sexual reproduction , population , botany , euphorbiaceae , annual plant , horticulture , ecology , demography , sociology
The phenology of germination, vegetative growth and sexual reproduction in the annual Chamaesyce maculata (L.) Small (Euphorbiaceae) were investigated in a natural population in western Japan. Seedlings emerged from mid‐June to early October, with three peaks: mid‐June, late July and late August. Plants that emerged in June commenced sexual reproduction from late July, and thereafter both vegetative growth and sexual reproduction occurred together until early November, the plants showing no switching from vegetative growth to sexual reproduction. Seedlings that emerged in June and July suffered high mortality, but most seedlings that emerged from August onward survived until the reproductive stage. The minimum size for reproduction was largest for plants that emerged early in the season, and it decreased with a delay in seedling emergence. The late emergence of seedlings that resulted in low reproductive output may be to some extent compensated for by the increased probability of survival in the seedling stage. A transplant experiment clarified that C. maculata can repeat a maximum of three overlapping generations within a year. Multiple generations per year were attained by non‐dormant seeds produced in the first and second generations and clearly resulted in an increased reproductive output per year. The life cycle with multiple overlapping generations may have been acquired in habitats where unpredictable disturbance results in temporally unsuitable conditions for germination, vegetative growth and sexual reproduction of annual plants, but where suitable conditions frequently continue over a period longer than the single generation time of annual plants.