z-logo
open-access-imgOpen Access
Expression array analysis of the hepatocyte growth factor invasive program
Author(s) -
Fabiola Cecchi,
Chih-Jian Lih,
Young Ho Lee,
William Walsh,
Daniel C. Rabe,
P. Mickey Williams,
Donald P. Bottaro
Publication year - 2015
Publication title -
clinical and experimental metastasis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.269
H-Index - 100
eISSN - 1573-7276
pISSN - 0262-0898
DOI - 10.1007/s10585-015-9735-0
Subject(s) - hepatocyte growth factor , cancer research , biology , metastasis , angiogenesis , carcinogenesis , cell growth , prostate cancer , cancer , microbiology and biotechnology , receptor , genetics
Signaling by human hepatocyte growth factor (hHGF) via its cell surface receptor (MET) drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Oncogenic pathway activation also contributes to tumorigenesis and cancer progression, including tumor angiogenesis and metastasis, in several prevalent malignancies. The HGF gene encodes full-length hHGF and two truncated isoforms known as NK1 and NK2. NK1 induces all three HGF activities at modestly reduced potency, whereas NK2 stimulates only motogenesis and enhances HGF-driven tumor metastasis in transgenic mice. Prior studies have shown that mouse HGF (mHGF) also binds with high affinity to human MET. Here we show that, like NK2, mHGF stimulates cell motility, invasion and spontaneous metastasis of PC3M human prostate adenocarcinoma cells in mice through human MET. To identify target genes and signaling pathways associated with motogenic and metastatic HGF signaling, i.e., the HGF invasive program, gene expression profiling was performed using PC3M cells treated with hHGF, NK2 or mHGF. Results obtained using Ingenuity Pathway Analysis software showed significant overlap with networks and pathways involved in cell movement and metastasis. Interrogating The Cancer Genome Atlas project also identified a subset of 23 gene expression changes in PC3M with a strong tendency for co-occurrence in prostate cancer patients that were associated with significantly decreased disease-free survival.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here