Research Library

Premium Lysosomal delivery of therapeutic enzymes in cell models of Fabry disease
Author(s)
Marchesan D.,
Cox T. M.,
Deegan P. B.
Publication year2012
Publication title
journal of inherited metabolic disease
Resource typeJournals
PublisherSpringer Netherlands
Abstract The success of enzymatic replacement in Gaucher disease has stimulated development of targeted protein replacement for other lysosomal disorders, including Anderson‐Fabry disease, which causes fatal cardiac, cerebrovascular and renal injury: deficiency of lysosomal α‐Galactosidase A induces accumulation of glycosphingolipids. Endothelial cell storage was the primary endpoint in a clinical trial that led to market authorization. Two α‐Galactosidase A preparations are licensed worldwide, but fatal outcomes persist, with storage remaining in many tissues. We compare mechanisms of uptake of α ‐Galactosidase A into cells relevant to Fabry disease, in order to investigate if the enzyme is targeted to the lysosomes in a mannose‐6‐phosphate receptor dependent fashion, as generally believed. α ‐Galactosidase A uptake was examined in fibroblasts, four different endothelial cell models, and hepatic cells in vitro. Uptake of europium‐labeled human α ‐Galactosidase A was measured by time‐resolved fluorescence. Ligand‐specific uptake was quantified in inhibitor studies. Targeting to the lysosome was determined by precipitation and by confocal microscopy. The quantity and location of cation‐independent mannose‐6‐phosphate receptors in the different cell models were investigated using confocal microscopy. Uptake and delivery of α ‐Galactosidase A to lysosomes in fibroblasts is mediated by the canonical mannose‐6‐phosphate receptor pathway, but in endothelial cells in vitro this mechanism does not operate. Moreover, this observation is supported by a striking paucity of expression of cation independent mannose‐6‐phosphate receptors on the plasma membrane of the four endothelial cell models and by little delivery of enzyme to lysosomes, when compared with fibroblasts. If these observations are confirmed in vivo, alternative mechanisms will be needed to explain the ready clearance of storage from endothelial cells in patients undergoing enzyme replacement therapy.
Subject(s)biochemistry , biology , cell , disease , endothelial stem cell , enzyme , enzyme replacement therapy , fabry disease , growth factor , in vitro , lysosomal storage disease , lysosome , macrophage , mannose , mannose 6 phosphate , mannose 6 phosphate receptor , mannose receptor , medicine , microbiology and biotechnology , pathology , receptor
Language(s)English
SCImago Journal Rank1.462
H-Index102
eISSN1573-2665
pISSN0141-8955
DOI10.1007/s10545-012-9472-3

Seeing content that should not be on Zendy? Contact us.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here