Premium
Protein farnesylation and disease
Author(s) -
Novelli Giuseppe,
D'Apice Maria Rosaria
Publication year - 2012
Publication title -
journal of inherited metabolic disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.462
H-Index - 102
eISSN - 1573-2665
pISSN - 0141-8955
DOI - 10.1007/s10545-011-9445-y
Subject(s) - human genetics , metabolic disease , prenylation , medicine , bioinformatics , computational biology , pharmacology , chemistry , genetics , biology , biochemistry , enzyme , gene
Prenylation consists of the addition of an isoprenoid group to a cysteine residue located near the carboxyl terminal of a protein. This enzymatic posttranslational modification is important for the maturation and processing of proteins. Both processes are necessary to mediate protein‐protein and membrane‐protein associations, in addition to regulating the localisation and function of proteins. The severe phenotype of animals deficient in enzymes involved in both prenylation and maturation highlights the significance of these processes. Moreover, alterations in the genes coding for isoprenylated proteins or enzymes that are involved in both prenylation and maturation processes have been found to be the basis of severe human diseases, such as cancer, neurodegenerative disorders, retinitis pigmentosa, and premature ageing syndromes. Recent studies on isoprenylation and postprenylation processing in pathological conditions have unveiled surprising aspects of these modifications and their roles in different cellular pathways. The identification of these enzymes as therapeutic targets has led researchers to validate their effects in vitro and in vivo as antitumour or antiageing agents. This review attempts to summarise the basic aspects of protein isoprenylation and postprenylation, integrating our data with that observed in other studies to provide a comprehensive scenario of progeroid syndromes and the therapeutic avenues.