z-logo
open-access-imgOpen Access
A hybrid model of intercellular tension and cell–matrix mechanical interactions in a multicellular geometry
Author(s) -
Lewis E. Scott,
Lauren Griggs,
Vani Narayanan,
Daniel E. Conway,
Christopher A. Lemmon,
Seth H. Weinberg
Publication year - 2020
Publication title -
biomechanics and modeling in mechanobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 68
eISSN - 1617-7959
pISSN - 1617-7940
DOI - 10.1007/s10237-020-01321-8
Subject(s) - multicellular organism , cell , extracellular matrix , microbiology and biotechnology , cell migration , cell junction , cell adhesion , adherens junction , materials science , chemistry , biophysics , biology , cadherin , biochemistry
Epithelial cells form continuous sheets of cells that exist in tensional homeostasis. Homeostasis is maintained through cell-to-cell junctions that distribute tension and balance forces between cells and their underlying matrix. Disruption of tensional homeostasis can lead to epithelial-mesenchymal transition (EMT), a transdifferentiation process in which epithelial cells adopt a mesenchymal phenotype, losing cell-cell adhesion and enhancing cellular motility. This process is critical during embryogenesis and wound healing, but is also dysregulated in many disease states. To further understand the role of intercellular tension in spatial patterning of epithelial cell monolayers, we developed a multicellular computational model of cell-cell and cell-substrate forces. This work builds on a hybrid cellular Potts model (CPM)-finite element model to evaluate cell-matrix mechanical feedback of an adherent multicellular cluster. Cellular movement is governed by thermodynamic constraints from cell volume, cell-cell and cell-matrix contacts, and durotaxis, which arises from cell-generated traction forces on a finite element substrate. Junction forces at cell-cell contacts balance these traction forces, thereby producing a mechanically stable epithelial monolayer. Simulations were compared to in vitro experiments using fluorescence-based junction force sensors in clusters of cells undergoing EMT. Results indicate that the multicellular CPM model can reproduce many aspects of EMT, including epithelial monolayer formation dynamics, changes in cell geometry, and spatial patterning of cell-cell forces in an epithelial tissue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here