z-logo
open-access-imgOpen Access
Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation
Author(s) -
Viral D. Tejani,
Jeong-Seo Kim,
Jacob Oleson,
Paul J. Abbas,
Carolyn J. Brown,
Marlan R. Hansen,
Bruce J. Gantz
Publication year - 2021
Publication title -
journal of the association for research in otolaryngology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.498
H-Index - 72
eISSN - 1525-3961
pISSN - 1438-7573
DOI - 10.1007/s10162-021-00785-4
Subject(s) - electrocochleography , hair cell , hearing loss , audiology , cochlear implant , auditory neuropathy , medicine , cochlear nerve , auditory system , cochlea
Changes in cochlear implant (CI) design and surgical techniques have enabled the preservation of residual acoustic hearing in the implanted ear. While most Nucleus Hybrid L24 CI users retain significant acoustic hearing years after surgery, 6-17 % experience a complete loss of acoustic hearing (Roland et al. Laryngoscope. 126(1):175-81. (2016), Laryngoscope. 128(8):1939-1945 (2018); Scheperle et al. Hear Res. 350:45-57 (2017)). Electrocochleography (ECoG) enables non-invasive monitoring of peripheral auditory function and may provide insight into the pathophysiology of hearing loss. The ECoG response is evoked using an acoustic stimulus and includes contributions from the hair cells (cochlear microphonic-CM) as well as the auditory nerve (auditory nerve neurophonic-ANN). Seven Hybrid L24 CI users with complete loss of residual hearing months after surgery underwent ECoG measures before and after loss of hearing. While significant reductions in CMs were evident after hearing loss, all participants had measurable CMs despite having no measurable acoustic hearing. None retained measurable ANNs. Given histological data suggesting stable hair cell and neural counts after hearing loss (e.g., Quesnel et al. Hear Res. 333:225-234. (2016)), the loss of ECoG and audiometric hearing may reflect reduced synaptic input. This is consistent with the theory that residual CM responses coupled with little to no ANN responses reflect a "disconnect" between hair cells and auditory nerve fibers (Fontenot et al. Ear Hear. 40(3):577-591. 2019). This "disconnection" may prevent proper encoding of auditory stimulation at higher auditory pathways, leading to a lack of audiometric responses, even in the presence of viable cochlear hair cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here