Premium
Movements and source–sink dynamics of a Masai giraffe metapopulation
Author(s) -
Lee Derek E.,
Bolger Douglas T.
Publication year - 2017
Publication title -
population ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 59
eISSN - 1438-390X
pISSN - 1438-3896
DOI - 10.1007/s10144-017-0580-7
Subject(s) - metapopulation , biology , sink (geography) , ecology , occupancy , habitat , wildlife , population , biological dispersal , geography , demography , cartography , sociology
Abstract Spatial variation in habitat quality and anthropogenic factors, as well as social structure, can lead to spatially structured populations of animals. Demographic approaches can be used to improve our understanding of the dynamics of spatially structured populations and help identify subpopulations critical for the long‐term persistence of regional metapopulations. We provide a regional metapopulation analysis to inform conservation management for Masai giraffes ( Giraffa camelopardalis tippelskirchi ) in five subpopulations defined by land management designations. We used data from an individual‐based mark–recapture study to estimate subpopulation sizes, subpopulation growth rates, and movement probabilities among subpopulations. We assessed the source–sink structure of the study population by calculating source–sink statistics, and we created a female‐based matrix metapopulation model composed of all subpopulations to examine how variation in demographic components of survival, reproduction, and movement affected metapopulation growth rate. Movement data indicated no subpopulation was completely isolated, but movement probabilities varied among subpopulations. Source–sink statistics and net flow of individuals indicated three subpopulations were sources, while two subpopulations were sinks. We found areas with higher wildlife protection efforts and fewer anthropogenic impacts were sources, and less‐protected areas were identified as sinks. Our results highlight the importance of identifying source–sink dynamics among subpopulations for effective conservation planning and emphasize how protected areas can play an important role in sustaining metapopulations.