Premium
Genetic diversity and structure of a Mediterranean endemic plant in Corsica ( Mercurialis corsica , Euphorbiaceae)
Author(s) -
Migliore Jérémy,
Baumel Alex,
Juin Marianick,
Diadema Katia,
Hugot Laetitia,
Verlaque Régine,
Médail Frédéric
Publication year - 2011
Publication title -
population ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 59
eISSN - 1438-390X
pISSN - 1438-3896
DOI - 10.1007/s10144-011-0266-5
Subject(s) - biology , endemism , genetic diversity , gene flow , population , corsican , genetic structure , genetic divergence , isolation by distance , ecology , biodiversity , mediterranean climate , population fragmentation , demography , linguistics , philosophy , sociology
The island of Corsica is a Mediterranean hotspot of plant biodiversity characterized by a high rate of plant endemism, but also by a lack of studies combining genetic diversity and conservation. In Corsica, the dioecious and Corso‐Sardinian endemic Mercurialis corsica Cosson (Euphorbiaceae) occurs across a wide ecological gradient, but the number of populations have decreased considerably over the last century. The main aim of this study was to examine the patterns of genetic diversity occurring in the Corsican populations of M. corsica , depending on their location and demographic structure. The rDNA sequences did not show the existence of any polymorphism, whereas the cpDNA sequences revealed the divergence of the western Corsican populations. By contrast, when the AFLP markers were examined, although significant levels of differentiation were detected between populations, no distinct geographical patterns were observed except for the pronounced isolation of the Cap Corse genotypes. No significant correlations were found to exist between population size and the genetic diversity indexes used. The results of this study suggest that M. corsica has undergone a complex gene flow history involving past population admixtures, followed by fragmentation processes resulting in population differentiation but no geographical patterns of isolation. These results support the existence of three evolutive conservation units which have to be monitored in priority to determine whether the current pattern of demographic structure is still declining or has stabilized.