z-logo
Premium
Experimental translocation of juvenile water voles in a Scottish lowland metapopulation
Author(s) -
Fisher Diana O.,
Lambin Xavier,
Yletyinen Sonja M.
Publication year - 2009
Publication title -
population ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 59
eISSN - 1438-390X
pISSN - 1438-3896
DOI - 10.1007/s10144-008-0122-4
Subject(s) - biological dispersal , metapopulation , biology , ecology , habitat , colonisation , population , attraction , local extinction , population density , colonization , demography , linguistics , philosophy , sociology
Population density affects dispersal success because residents can hinder or facilitate immigration into a new site, via a “social fence effect” or “social attraction” (or “conspecific attraction”), respectively. These mechanisms can affect the dynamics of fragmented populations and the success of translocations. However, information on the settlement behaviour of dispersers is rare. We conducted a manipulative field experiment using wild water voles, which exist in metapopulations along waterways in Scotland. We translocated 17 young of dispersal age into either an occupied site or a vacant site containing good habitat, which had recently become extinct due to a feral predator (American mink) moving through. We monitored the movements of translocated voles using radio telemetry. Translocated voles were less likely to settle in occupied sites with higher densities of residents, suggesting a possible social fence effect at high density. There was evidence of a social attraction mechanism, because voles never remained at new sites unless another individual arrived soon after translocation, and they were more likely to settle in occupied or colonised sites than vacant ones. Voles remained in the transient phase of dispersal for many days, and often followed a “stepping stone” trajectory, stopping for several days at successive sites. We suggest that trajectories followed by dispersing water voles, the time scale and long dispersal distances found in this species are conducive to locating conspecifics at low density and colonising vacant habitat. These results are encouraging for prospects of metapopulation persistence and future translocation success.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here