
Perilla frutescens Britton var. frutescens leaves attenuate dextran sulfate sodium-induced acute colitis in mice and lipopolysaccharide-stimulated angiogenic processes in human umbilical vein endothelial cells
Author(s) -
Yuna Lee,
Jungjae Lee,
Jihyeung Ju
Publication year - 2019
Publication title -
food science and biotechnology/food science and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.595
H-Index - 38
eISSN - 2092-6456
pISSN - 1226-7708
DOI - 10.1007/s10068-019-00711-8
Subject(s) - umbilical vein , perilla frutescens , lipopolysaccharide , monocyte , chemistry , leukotriene b4 , nitric oxide , colitis , tumor necrosis factor alpha , pharmacology , immunology , inflammation , biochemistry , medicine , in vitro
The aim of the current study was to investigate whether the leaves of Perilla frutescens Britton var. frutescens (PL), a frequently consumed vegetable in Korea, attenuate dextran sulfate sodium (DSS)-induced acute colitis in mice and lipopolysaccharide (LPS)-stimulated angiogenic processes in human umbilical vein endothelial cells (HUVEC). In DSS-treated mice, dietary supplementation with PL mitigated DAI and colon shortening. The dietary PL also reduced colonic levels of inflammatory and angiogenic mediators, such as interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, leukotriene B 4 , inducible nitric oxide synthase, cyclooxygenase-2, basic fibroblast growth factor, and intercellular adhesion molecule-1 (ICAM-1). Treatment of HUVEC with ethanol extract of PL attenuated LPS-stimulated increases in ICAM-1 levels, monocyte adhesion, invasion, and tube formation. This study suggests that dietary PL effectively inhibited DSS-induced acute colitis in mice, and its anti-angiogenic activities may partially contribute to the inhibition.