z-logo
open-access-imgOpen Access
Perilla frutescens Britton var. frutescens leaves attenuate dextran sulfate sodium-induced acute colitis in mice and lipopolysaccharide-stimulated angiogenic processes in human umbilical vein endothelial cells
Author(s) -
Yuna Lee,
Jungjae Lee,
Jihyeung Ju
Publication year - 2019
Publication title -
food science and biotechnology/food science and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.595
H-Index - 38
eISSN - 2092-6456
pISSN - 1226-7708
DOI - 10.1007/s10068-019-00711-8
Subject(s) - umbilical vein , perilla frutescens , lipopolysaccharide , monocyte , chemistry , leukotriene b4 , nitric oxide , colitis , tumor necrosis factor alpha , pharmacology , immunology , inflammation , biochemistry , medicine , in vitro
The aim of the current study was to investigate whether the leaves of Perilla frutescens Britton var. frutescens (PL), a frequently consumed vegetable in Korea, attenuate dextran sulfate sodium (DSS)-induced acute colitis in mice and lipopolysaccharide (LPS)-stimulated angiogenic processes in human umbilical vein endothelial cells (HUVEC). In DSS-treated mice, dietary supplementation with PL mitigated DAI and colon shortening. The dietary PL also reduced colonic levels of inflammatory and angiogenic mediators, such as interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, leukotriene B 4 , inducible nitric oxide synthase, cyclooxygenase-2, basic fibroblast growth factor, and intercellular adhesion molecule-1 (ICAM-1). Treatment of HUVEC with ethanol extract of PL attenuated LPS-stimulated increases in ICAM-1 levels, monocyte adhesion, invasion, and tube formation. This study suggests that dietary PL effectively inhibited DSS-induced acute colitis in mice, and its anti-angiogenic activities may partially contribute to the inhibition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here