z-logo
open-access-imgOpen Access
A note on the Klein-Gordon equation and its solutions with applications to certain boundary value problems involving waves in plasma and in the atmosphere
Author(s) -
T. R. Robinson
Publication year - 1994
Publication title -
annales geophysicae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.522
H-Index - 93
eISSN - 1432-0576
pISSN - 0992-7689
DOI - 10.1007/s00585-994-0220-3
Subject(s) - bessel function , boundary value problem , mathematical analysis , context (archaeology) , wave equation , physics , mathematics , isotropy , quantum mechanics , paleontology , biology
Certain algebraic solutions of theKlein-Gordon equation which involve Bessel functions are examined. It isdemonstrated that these functions constitute an infinite series, each term ofwhich is the solution of a boundary value problem involving a combination ofsource functions which comprise delta functions and their derivatives toinfinite order. In addition, solutions to the homogeneous equation areconstructed which comprise a continuous spectrum over non-integer order. Thesesolutions are discussed in the context of wave propagation in isotropic coldplasma and the atmosphere

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here