z-logo
open-access-imgOpen Access
Major histocompatibility complex class I- and II-deficient knock-out mice are resistant to primary but susceptible to secondary Eimeria papillata infections
Author(s) -
Marco Schito,
Bill Chobotar,
John R. Barta
Publication year - 1998
Publication title -
parasitology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.716
H-Index - 94
eISSN - 1432-1955
pISSN - 0932-0113
DOI - 10.1007/s004360050416
Subject(s) - biology , cd8 , major histocompatibility complex , immunology , immune system , cytotoxic t cell , mhc class i , t cell , perforin , antigen presentation , virology , genetics , in vitro
Two distinct mechanisms seem to function in reducing oocyst output during Eimeria papillata infections in mice. For naive mice, immunity was afforded by a T-cell-independent gamma-interferon (IFN-gamma) response mediated by natural killer (NK) cells. On reinfection, resistance was associated with T-cells and, to a lesser extent, perforin. To determine if antigen presentation with major histocompatibility complex (MHC) molecules was required to control oocyst production by NK cells during primary infection or by T-cells during secondary infection, mutant mice that lacked H2-IAbeta(b) (Abeta(b)-/-) or beta2-microglobulin (beta2m-/-) were used. Since MHC molecules are required for the maturation of alphabeta T-cells, Abeta(b)-/- and beta2m-/- mutant mice are also deficient in functional alphabeta+CD4+ or alphabeta+CD8+ T-cells, respectively. As compared with wild-type control mice, oocyst output by mutant mice was not significantly affected during primary infection, suggesting that the ability of NK cells to control parasite replication is not dependent on the expression of MHC molecules. On reinfection, differences were observed for mutant mice as compared with controls. Abeta(b)-/- mice were found to be more susceptible than beta2m-/- mice, suggesting that the alphabeta+CD4+ T-cell subset plays a greater role in resistance to reinfection than does the alphabeta+CD8+ T-cell subset. The mechanism of resistance depends on the immune status of the host and requires the coordinated interaction of both alphabeta+ T-cell subsets for optimal parasite control during subsequent infections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom