
Transcriptional factors in calcium mishandling and atrial fibrillation development
Author(s) -
Wenli Dai,
Sneha Kesaraju,
Christopher Weber
Publication year - 2021
Publication title -
pflügers archiv für die gesamte physiologie des menschen und der tiere/pflügers archiv
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.428
H-Index - 129
eISSN - 0365-267X
pISSN - 0031-6768
DOI - 10.1007/s00424-021-02553-y
Subject(s) - transcription factor , calcium , biology , atrial fibrillation , microrna , calcium signaling , bioinformatics , gene , neuroscience , signal transduction , genetics , microbiology and biotechnology , medicine
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.