Open Access
A sensitive method for the detection of legacy and emerging per- and polyfluorinated alkyl substances (PFAS) in dairy milk
Author(s) -
Nicholas I. Hill,
Jitka Bečanová,
Rainer Lohmann
Publication year - 2021
Publication title -
analytical and bioanalytical chemistry/analytical and bioanalytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.86
H-Index - 166
eISSN - 1618-2650
pISSN - 1618-2642
DOI - 10.1007/s00216-021-03575-2
Subject(s) - contamination , environmental chemistry , population , tolerable daily intake , extraction (chemistry) , human health , chemistry , environmental health , food science , environmental science , biology , medicine , chromatography , ecology , body weight , endocrinology
There is widespread contamination by per- and polyfluoroalkyl substances (PFAS) across the globe, with adverse effects on human and environmental health. For human exposure, drinking water and dietary exposure have been recognized as important PFAS exposure pathway for the general population. Several documented cases of dairy milk contamination by PFAS have raised concerns over this exposure pathway in general. A sensitive method for determination of 27 PFAS in milk was hence modified and applied on raw and processed milk samples from 13 farms across the United States (U.S.). A combination of acid and basic extraction method and ENVI-Carb clean-up achieved recoveries of targeted PFAS between 70 and 141%. The method detection limits (MDL) ranged from 0.8 to 22 ng/L (for 26 PFAS) and 144 ng/L for perfluorobutanoic acid (PFBA). The uniqueness of this method is considered in the targeted screening of a broad range of legacy PFAS, as well as perfluorinated sulfonamide species and fluorotelomer sulfonates. No legacy PFAS were detected in 13 milk samples from regions of concern given local use of biosolids or proximity to fire training areas. Overall, then, the uptake of perfluoroalkyl acids (PFAA) from dairy milk in the U.S. is considered low.