z-logo
open-access-imgOpen Access
A UPLC-MRM-MS method for comprehensive profiling of Amadori compound-modified phosphatidylethanolamines in human plasma
Author(s) -
Xia He,
Zhucui Li,
Qibin Zhang
Publication year - 2020
Publication title -
analytical and bioanalytical chemistry/analytical and bioanalytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.86
H-Index - 166
eISSN - 1618-2650
pISSN - 1618-2642
DOI - 10.1007/s00216-020-03012-w
Subject(s) - amadori rearrangement , chemistry , glycation , mass spectrometry , chromatography , tandem mass spectrometry , selected reaction monitoring , liquid chromatography–mass spectrometry , biochemistry , receptor
Phosphatidylethanolamines (PEs) are targets of non-enzymatic glycation, a chemical process that occurs between glucose and primary amine-containing biomolecules. As the early-stage non-enzymatic glycation products of PE, Amadori-PEs are implicated in the pathogenesis of various diseases. However, only a few Amadori-PE molecular species have been identified so far; a comprehensive profiling of these glycated PE species is needed to establish their roles in disease pathology. Herein, based on our previous work using liquid chromatography-coupled neutral loss scanning and product ion scanning tandem mass spectrometry (LC-NLS-MS and LC-PIS-MS) in tandem, we extend identification of Amadori-PE to the low-abundance species, which is facilitated by using plasma lipids glycated in vitro. The confidence of identification is improved by high-resolution tandem mass spectrometry and chromatographic retention time regression. A LC-coupled multiple reaction monitoring mass spectrometry (LC-MRM-MS) assay is further developed for more sensitive quantitation of the Amadori compound-modified lipids. Using synthesized stable isotope-labeled Amadori lipids as internal standards, levels of 142 Amadori-PEs and 33 Amadori-LysoPEs are determined in the NIST human plasma standard reference material. These values may serve as an important reference for future investigations of Amadori-modified lipids in human diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here