z-logo
open-access-imgOpen Access
Segmentation of prostate and prostate zones using deep learning
Author(s) -
Olmo Zavala-Romero,
Adrian L. Breto,
Isaac Xu,
Yeon S. Chang,
Nicole Gautney,
Alan Dal Pra,
Matthew C. Abramowitz,
Alan Pollack,
Radka Stoyanova
Publication year - 2020
Publication title -
strahlentherapie und onkologie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.801
H-Index - 68
eISSN - 1439-099X
pISSN - 0179-7158
DOI - 10.1007/s00066-020-01607-x
Subject(s) - siemens , segmentation , artificial intelligence , prostate , medicine , standard deviation , deep learning , pattern recognition (psychology) , artificial neural network , nuclear medicine , computer science , convolutional neural network , sørensen–dice coefficient , image segmentation , mathematics , statistics , cancer , physics , quantum mechanics
Develop a deep-learning-based segmentation algorithm for prostate and its peripheral zone (PZ) that is reliable across multiple MRI vendors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here